Human myostatin negatively regulates human myoblast growth and differentiation.

نویسندگان

  • Craig McFarlane
  • Gu Zi Hui
  • Wong Zhi Wei Amanda
  • Hiu Yeung Lau
  • Sudarsanareddy Lokireddy
  • Ge Xiaojia
  • Vincent Mouly
  • Gillian Butler-Browne
  • Peter D Gluckman
  • Mridula Sharma
  • Ravi Kambadur
چکیده

Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myostatin promotes tenogenic differentiation of C2C12 myoblast cells through Smad3

Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in developing and adult skeletal muscle and negatively regulates skeletal muscle growth. Recently, myostatin has been found to be expressed in tendons and increases tendon fibroblast proliferation and the expression of tenocyte markers. C2C12 is a mouse myoblast cell line, which has the ability to transdif...

متن کامل

Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis.

Expression of Wnt proteins is known to be important for developmental processes such as embryonic pattern formation and determination of cell fate. Previous studies have shown that Wn4 was involved in the myogenic fate of somites, in the myogenic proliferation, and differentiation of skeletal muscle. However, the function of this factor in adult muscle homeostasis remains not well understood. H...

متن کامل

Titin-cap associates with, and regulates secretion of, Myostatin.

Myostatin, a secreted growth factor, is a key negative regulator of skeletal muscle growth. To identify modifiers of Myostatin function, we screened for Myostatin interacting proteins. Using a yeast two-hybrid screen, we identified Titin-cap (T-cap) protein as interacting with Myostatin. T-cap is a sarcomeric protein that binds to the N-terminal domain of Titin and is a substrate of the titin k...

متن کامل

Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.

Myostatin, a member of the transforming growth factor (TGF)-beta family, plays an important role in regulating skeletal muscle growth and differentiation. Here we examined the role of FoxO1 and SMAD transcription factors in regulating myostatin gene expression and myoblast differentiation in C(2)C(12) myotubes in vitro. Both myostatin and FoxO1 mRNA expression were greater in fast- vs. slow-twi...

متن کامل

Growth and differentiation factor-11 is developmentally regulated in skeletal muscle and inhibits myoblast differentiation

Growth and differentiation factor-11 (GDF-11) is a secreted protein that is closely related to myostatin, a known inhibitor of skeletal muscle development. The role of GDF-11 in regulating skeletal muscle growth remains unclear and the pattern of expression during post-natal growth has not been reported. Therefore, we sought to determine the expression of GDF-11 during post-natal growth and its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 301 1  شماره 

صفحات  -

تاریخ انتشار 2011